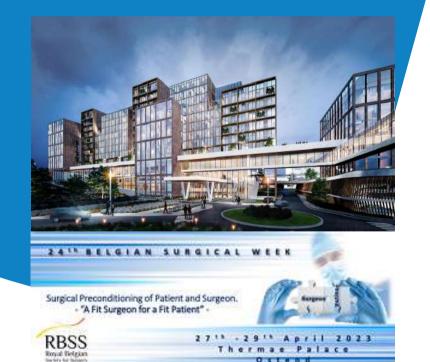


How to handle a difficult gallbladder?


Dr Lancelot MARIQUE

Liver and Pancreas Unit

Liver Transplant

Abdominal Transplant and Surgery Department

Cliniques Universitaires Saint-Luc

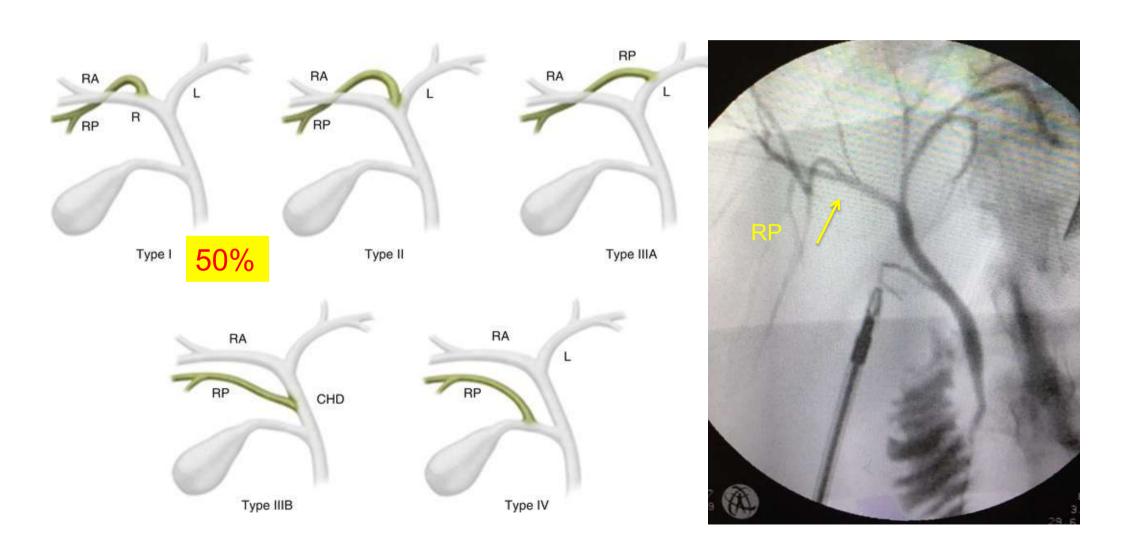
EPIDEMIOLOGY

GALLSTONE DISEASE = major health problem

1 to 4% of the Western world population every year

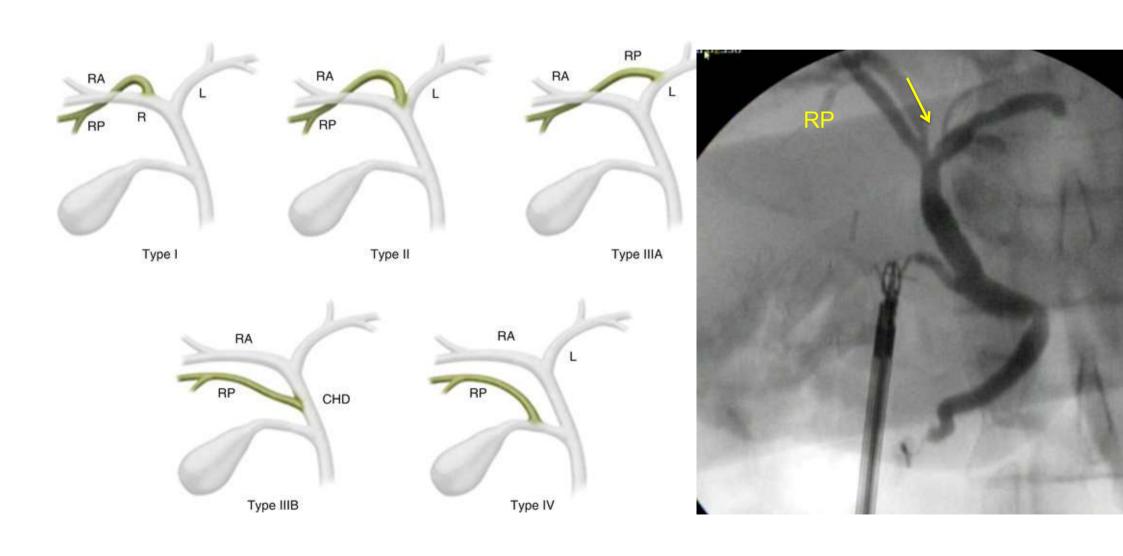
10% to 15% during their lifetime

3F: 1M ratio

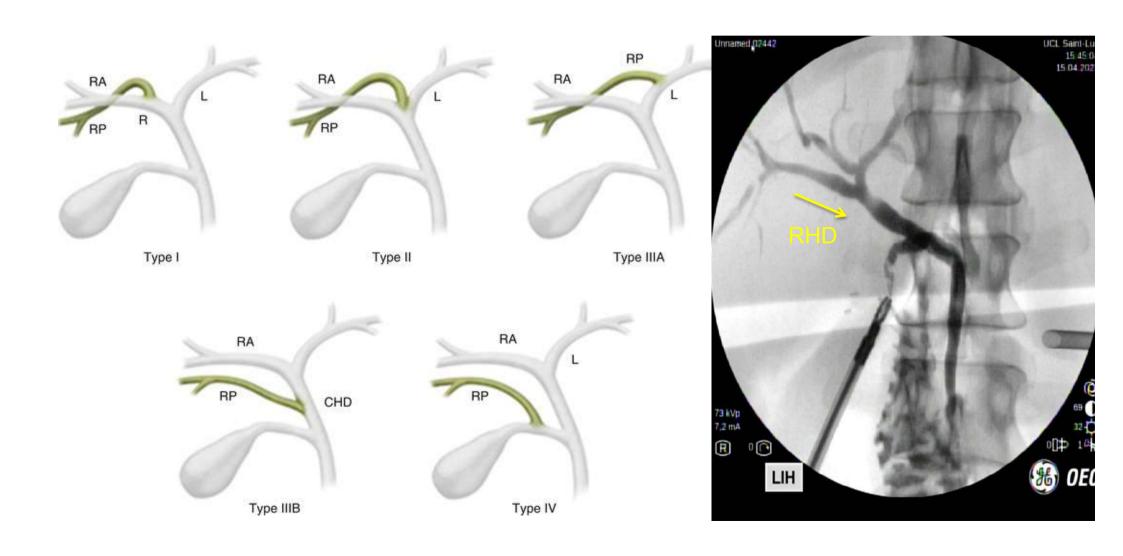

CHOLECYSTECTOMY:

Mean : **24.000 / year** (RIZIV /INAMI)

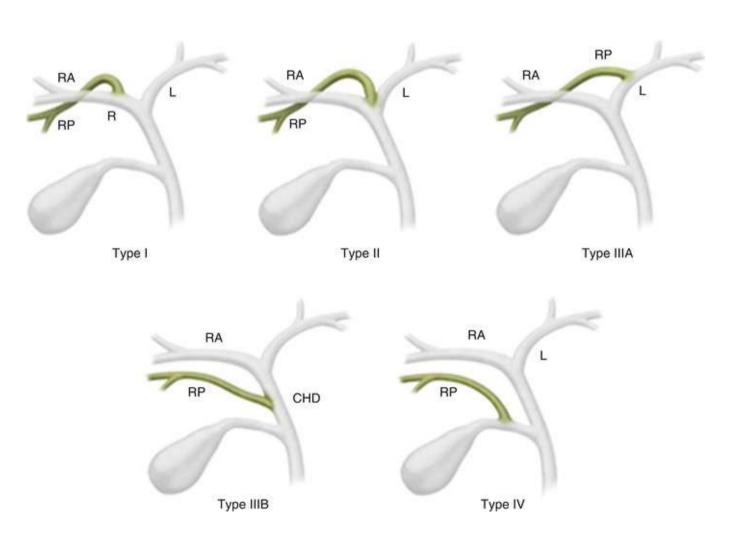
=> Every (young) surgeon will have to deal with (difficult) cases

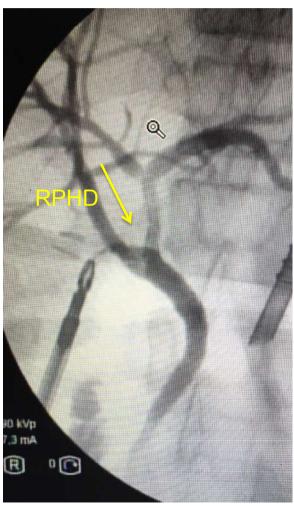


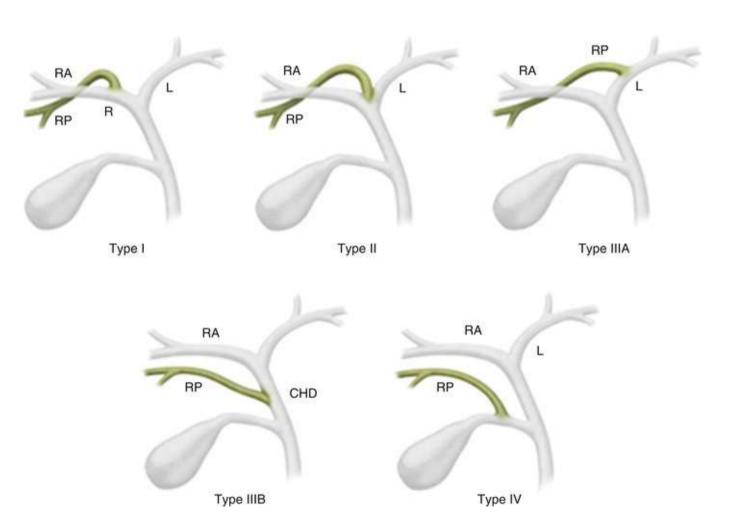
BILIARY VARIATIONS: TYPE I

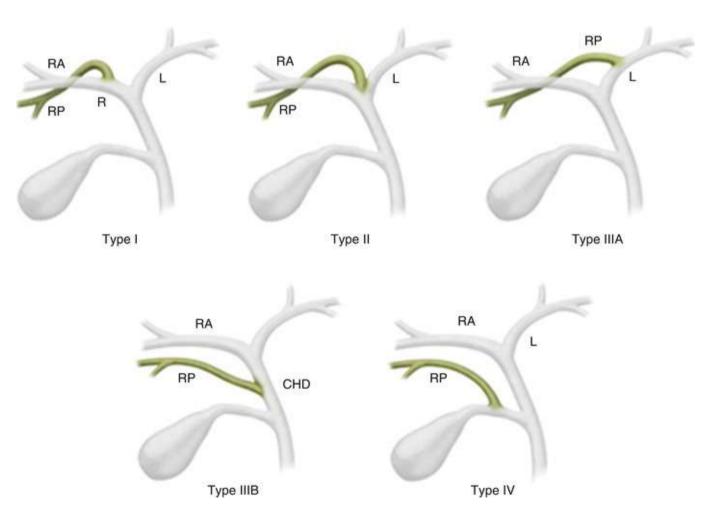


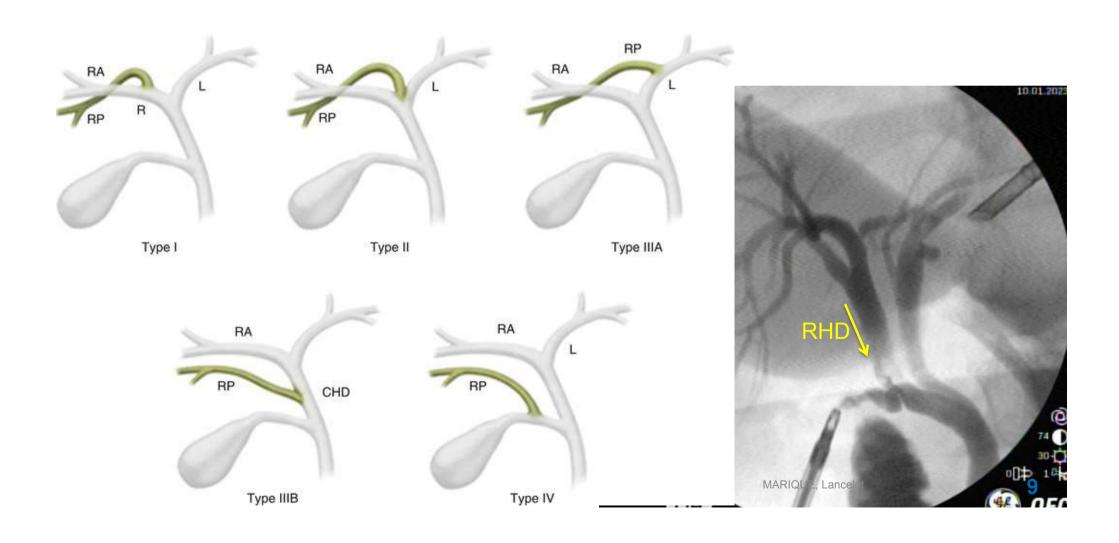
BILIARY VARIATIONS: TYPE II




BILIARY VARIATIONS: TYPE IIIB


BILIARY VARIATIONS: TYPE IIIB


BILIARY VARIATIONS: TYPE IIIB


BILIARY VARIATIONS: TYPE IV

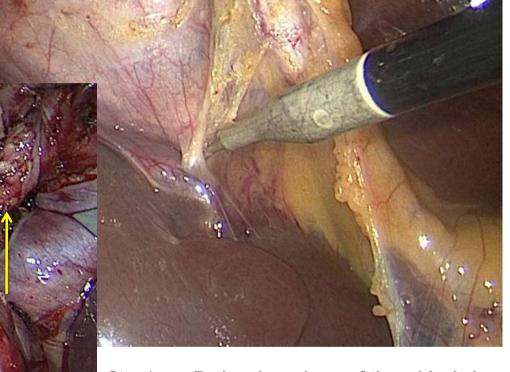
BILIARY VARIATIONS: TYPE IV

LAPAROSCOPIC CHOLECYSTECTOMY

= GOLD STANDARD

1993 NIH CONSENSUS CONFERENCE

- Decrease in postoperative pain
- Reduced LOS
- Faster return to work
- Similar morbi-mortality
- Similar Costs


INCREASED RISK OF BILIAIRY DUCT INJURY

Gallstones and Laparoscopic Cholecystectomy

NIH Consensus Development Panel on Gallstones and Laparoscopic Cholecystectomy

SAFE OPERATIVE MANAGEMENT

30° VIEW LAPAROSCOPE KEEP LEFT CRITICAL VIEW OF SAFETY

Strasberg, Rationale and use of the critical view of safety in laparoscopic cholecystectomy. J Am Coll Surg 2010.

Strasberg, An analysis of the problem of biliary injury during laparoscopic cholecystectomy. J Am Coll Surg, 1995

DIFFICULT CONDITIONS

Procedure with an increased surgical risk compared with standard cholecystectomy

- Incidence of 16% in large series
- Severe inflammation, local anatomy distortion and difficult dissections

Local Conditions

	Gall-bladder	Cystic pedicle	Adhesions
Grade I	Floppy, non-adherent	Clear, thin	Simple, to neck and Hartman's pouch
Grade II	Mucocele	Fat-laden	Simple, up to the body
	Packed with stones		
Grade III	Deep fossa	Abnormal anatomy	Dense, up to the fundus
	Acute cholecystitis	Cystic duct short, dilated	Involving hepatic flexure
	Contracted, fibrous	or obscured	or duodenum
	Hartman's pouch adherent		
	to CBD or with stone		

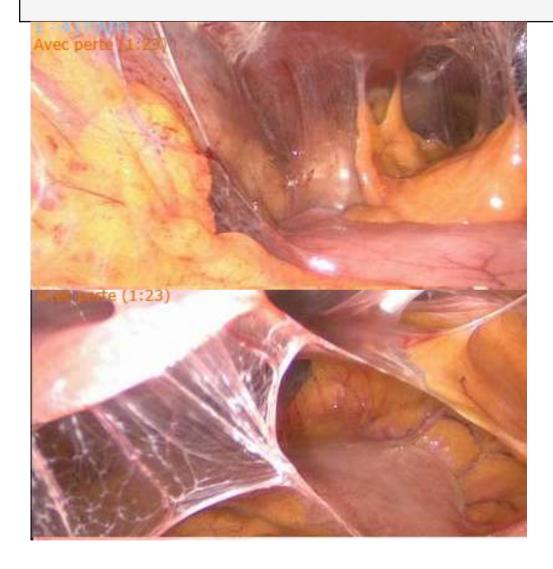
Patient's Conditions

Previous surgery.ies

Obesity

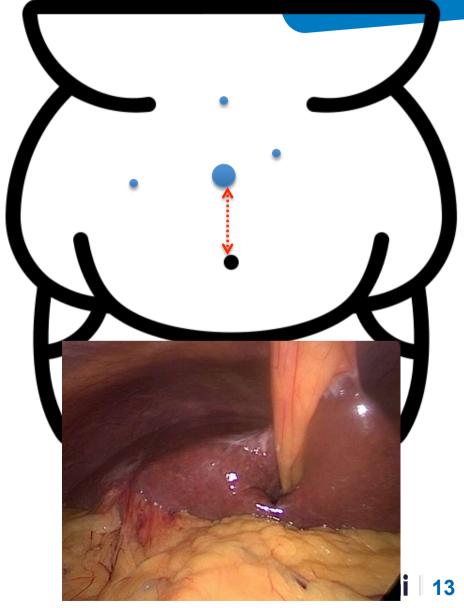
Risk of bleeding

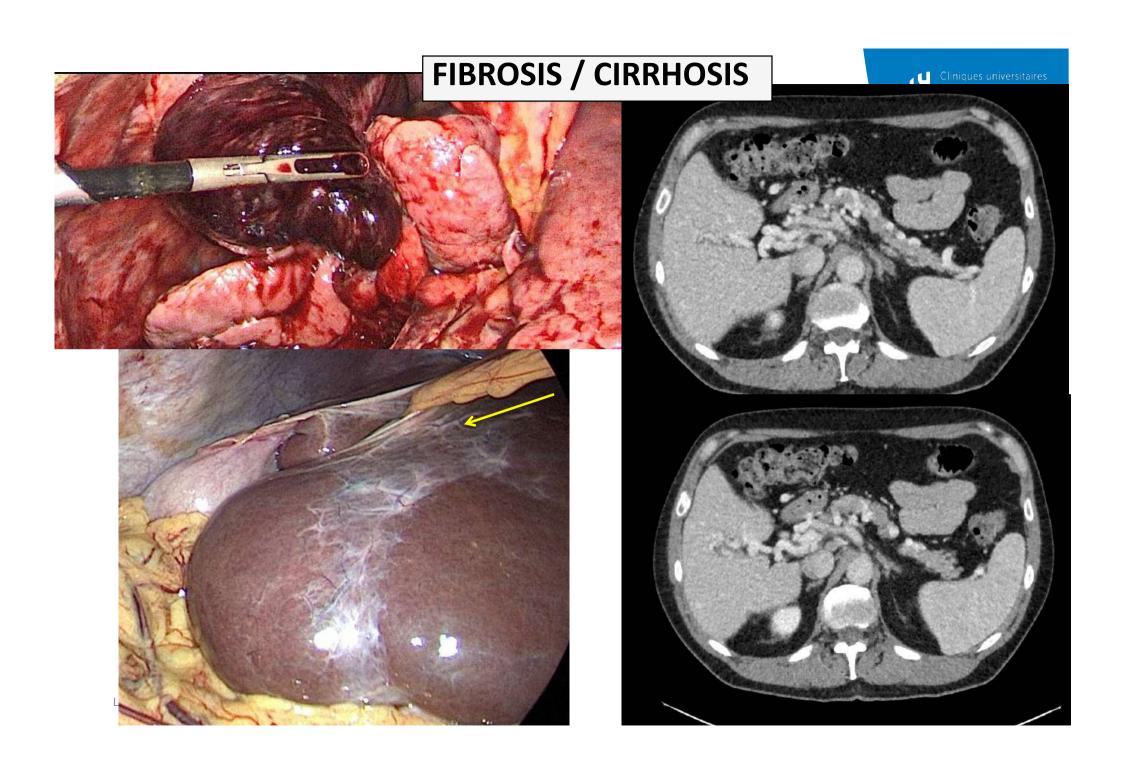
Cirrhosis Anticoagulation


EVERY SITUATION in which CVS can not be SAFELY achieved

Mass

Duodenum or hepatic flexure difficult to separate


Left-sided gallbladder


PREVIOUS UPPER ABDOMINAL SURGERIES

ACUTE CHOLECYSTITIS

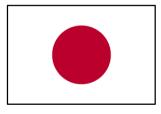
Grade II (moderate) acute cholecystitis

"Grade II" acute cholecystitis is associated with any one of the following conditions:

- 1. Elevated WBC count (>18,000/mm³)
- 2. Palpable tender mass in the right upper abdominal quadrant
- 3. Duration of complaints >72 ha
- Marked local inflammation (gangrenous cholecystitis, pericholecystic abscess, hepatic abscess, biliary pericholecystitis)

Tokyo Guidelines 2018: diagnostic criteria and severity grading of acute cholecystitis (with videos)

Masamichi Yokoe · Jiro Hata · Tadahiro Takada · Steven M. Strasberg · Horacio J. Asbun · Go Wakabayashi · Kazuto Kozaka · Itaru Endo · Daniel J. Deziel · Fumihiko Miura · Kohji Okamoto · Tsann-Long Hwang · Wayne Shih-Wei Huang · Chen-Guo Ker · Miin-Fu Chen · Ho-Seong Han · Yoo-Seok Yoon · In-Seok Choi · Dong-Sup Yoon · Yoshinori Noguchi · Satoru Shikata · Tomohiko Ukai · Ryota Higuchi · Toshifumi Gabata · Yasuhisa Mori · Yukio Iwashita · Taizo Hibi · Palepu Jagannath · Eduard Jonas · Kui-Hin Liau · Christos Dervenis · Dirk J. Gouma · Daniel Cherqui · Giulio Belli · O. James Garden · Mariano Eduardo Giménez · Eduardo de Santibañes · Kenji Suzuki · Akiko Umezawa · Avinash Nivritti Supe · Henry A. Pitt · Harjit Singh · Angus C. W. Chan · Wan Yee Lau · Anthony Yuen Bun Teoh · Goro Honda · Atsushi Sugioka · Koji Asai · Harumi Gomi · Takao Itoi · Seiki Kiriyama · Masahiro Yoshida · Toshihiko Mayumi · Naoki Matsumura · Hiromi Tokumura ·


ACUTE CHOLECYSTITIS

Grade III (severe) acute cholecystitis

"Grade III" acute cholecystitis is associated with dysfunction of any one of the following organs/systems:

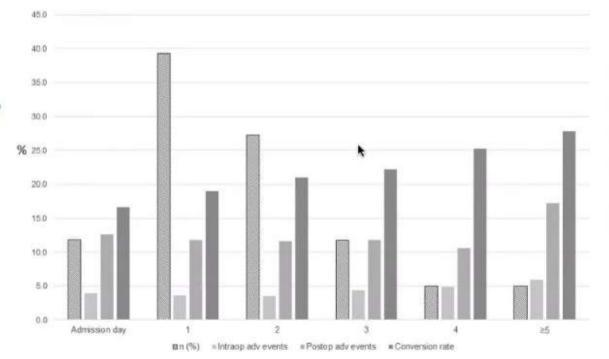
- 1. Cardiovascular dysfunction: hypotension requiring treatment with dopamine ≥5 µg/kg per min, or any dose of norepinephrine
- 2. Neurological dysfunction: decreased level of consciousness
- 3. Respiratory dysfunction: PaO₂/FiO₂ ratio <300
- Renal dysfunction: oliguria, creatinine >2.0 mg/dl
- 5. Hepatic dysfunction: PT-INR >1.5
- Hematological dysfunction: platelet count <100,000/mm³

Tokyo Guidelines 2018: diagnostic criteria and severity grading of acute cholecystitis (with videos)

Masamichi Yokoe · Jiro Hata · Tadahiro Takada · Steven M. Strasberg · Horacio J. Asbun · Go Wakabayashi · Kazuto Kozaka · Itaru Endo · Daniel J. Deziel · Fumihiko Miura · Kohji Okamoto · Tsann-Long Hwang · Wayne Shih-Wei Huang · Chen-Guo Ker · Miin-Fu Chen · Ho-Seong Han · Yoo-Seok Yoon · In-Seok Choi · Dong-Sup Yoon · Yoshinori Noguchi · Satoru Shikata · Tomohiko Ukai · Ryota Higuchi · Toshifumi Gabata · Yasuhisa Mori · Yukio Iwashita · Taizo Hibi · Palepu Jagannath · Eduard Jonas · Kui-Hin Liau · Christos Dervenis · Dirk J. Gouma · Daniel Cherqui · Giulio Belli · O. James Garden · Mariano Eduardo Giménez · Eduardo de

ACUTE CHOLECYSTITIS: OPTIMAL TIMING?

J Gastrointest Surg (2017) 21:33–40 DOI 10.1007/s11605-016-3223-y


2016 SSAT PLENARY PRESENTATION

The Sooner, the Better? The Importance of Optimal Timing of Cholecystectomy in Acute Cholecystitis: Data from the National Swedish Registry for Gallstone Surgery, GallRiks

My Blohm 1,2 · Johanna Österberg 2 · Gabriel Sandblom 1,3 · Lars Lundell 3 · Mats Hedberg 2 · Lars Enochsson 1,3 ©

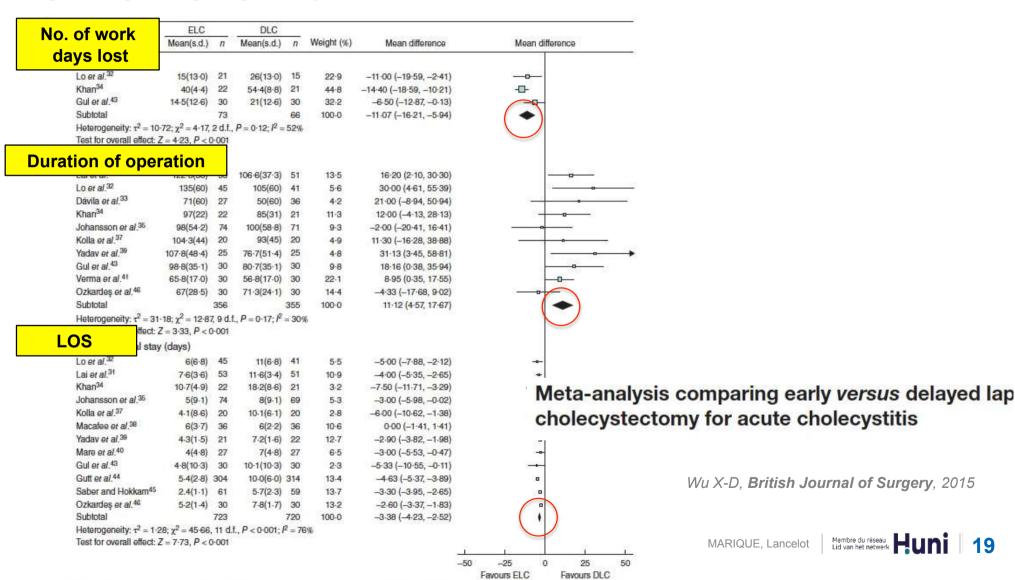
J Gastrointestinal Surg 2017

Liver and Pancreas Unit

SOMETIMES: it's not a piece of cake ...

ORIGINAL ARTICLE

A preoperative predictive scoring system to predict the ability to achieve the critical view of safety during laparoscopic cholecystectomy for acute cholecystitis


Table 2 Results of the univariate and multivariate analyses of risk factors for failure to create the CVS

Variable	Univariate an	alysis	Multivariate analysis			
	Odds ratio	95% CI	P value	Odds ratio	95% CI	P value
Alb ≤4.1 g/dl	4.37	1.66-11.49	0.002			
CRP >5.5 mg/dl	14.71	4.51-47.62	<0.001	9.60	12.54-36.27	0.001
Minor axis >4.7 cm	2.55	1.00-6.49	0.046			
Gallstone impaction	2.71	0.98-7.50	0.049	3.80	1.01-14.24	0.048
Time from symptom onset to operation >72 h	19.23	6.25-58.8	<0.001	11.69	3.10-43.57	< 0.001

Onoe. HBP. 2017

ACUTE CHOLECYSTITIS: ELC or DLC?

ACUTE CHOLECYSTITIS: ELC or DLC?

	Event	rate			
Marria d	ELC	DLC	Weight (%)	Relative risk	Relative ris
Vound					
£ - 4!	3 of 45	2 of 41	3.6	1:37 (0:24, 7:77)	- 0
fection	1 of 53	1 of 51	1-5	0.96 (0.06, 14.98)	19 . (2
	1 of 27	0 of 36	1-1	3-96 (0-17, 93-70)	88 80
Khan ³⁴	1 of 22	0 of 21	1-1	2.87 (0.12, 66.75)	
Johansson et al.35	7 of 74	6 of 71	10-2	1-12 (0-40, 3-17)	· -
Kolla er al.37	1 of 20	2 of 20	2-0	0-50 (0-05, 5-08)	
Macafee er al. 38	6 of 36	4 of 36	7.9	1-50 (0-46, 4-87)	
Mare et al. ⁴⁰	1 of 27	1 of 27	1.5	1-00 (0-07, 15-18)	87 87
Falzi er al. ⁴²	8 of 25	19 of 25	29-4	0.42 (0.23, 0.78)	-0-
Verma et al.41	0 of 30	0 of 30		Not estimable	C7000000
Gul et al.43	1 of 30	1 of 30	1-5	1-00 (0-07, 15-26)	-
Gutt et al.44	17 of 304	35 of 314	35-5	0-50 (0-29, 0-98)	-0-
Saber and Hokkam ⁴⁵	3 of 61	2 of 59	3-6	1.45 (0.25, 8.37)	1
- 40	0 of 30	1 of 30	1-1	0-33 (0-01, 7-87)	
114	50 of 784	74 of 791	100-0	0-65 (0-47, 0-91)	
le duct	- 9-96, 12	d.t., P = 0-62:	P-0%	\$52 BOOK \$100 CORN \$20	\ * /
	54, P = 0-0				
Injury	Sec. Adv. Decision Sec.				
iijai y	0 of 53	0 of 51		Not estimable	
Lo et al. ³²	0 of 45	1 of 41	24-9	0:30 (0:01, 7:27)	
Dávila et al.33	0 of 27	0 of 36	24.5	Not estimable	
Johansson et al. 35	0 of 74	1 of 71	24-7	0:32 (0:01, 7:73)	
Kolla er al 37	1 01 20	0 of 20	25-4	3-00 (0-13, 69-52)	8
Gul et al. ⁴³	0 of 30	0 of 30	20.4	Not estimable	
Verma et al 41	0 of 30	0 of 30		Not estimable	
Ozkardes et al. ⁴⁸	1 of 30	0 of 30	25-1	3-00 (0-13, 70-83)	
Subtotal	2 of 309	2 of 309	100-0	0-98 (0-20, 4-75)	
Heterogenetty: $\tau^2 = 0.00$		1578-583			
Test for overall effect- 7.			-05		
	00,7 - 00	500			
leakage	0 of 45	2 of 41	7-6	0-18 (0-01, 3-70)	944
leanage	1 0/ 53	0 of 51	6-8		
Johansson er al. ³⁶	6 of 74	0 of 71	8-4	2-89 (0-12, 69-32)	
Johansson er ar. 22 Kolla er ar. 37	6 of 74	0 of 20		12-48 (0-72, 217-53)	1000
Macatee et al 38			7-0	3-00 (0-13, 69-52)	
Macatee et al. ⁵⁰	1 of 36 0 of 25	0 of 36 1 of 25	6-8	3-00 (0-13, 71-28)	-
Mare er al. 40			6-9	0:33 (0:01, 7:81)	•
Mare et al. ⁴³	0 of 27	1 of 27	6-9	0-33 (0-01, 7-84)	•
	1 of 30	0 of 30	6-9	3-00 (0-13, 70-83)	F
Guitt et al.44	3 of 304	1 of 314	13-5	3-10 (0-32, 29-63)	40 0 8
Verma et al.41	0 of 30	0 of 30	20%	Not estimable	
Saber and Hokkam ⁴⁵ Ozkardes et al. ⁴⁸	3 of 61	2 of 59	22-4	1-45 (0-25, 8-37)	
	1 of 30	0 of 30	6.9	3-00 (0-13, 70-83)	- /
Subtotal	17 of 735	7 of 734	100-0	1-72 (0-75, 3-94)	/

Fig. 4 Forest plots comparing a wound infection, b bile duct injury, c bile leakage, d conversion to open surgery and e overall complications in early laparoscopic cholecystectomy (ELC) and delayed laparoscopic cholecystectomy (DLC) groups. A Mantel—Haenszel random-effects model was used. Relative risks are shown with 95 per cent c.i. Figure 4 continued on next page.

Meta-analysis comparing early versus delayed laps cholecystectomy for acute cholecystitis

Wu X-D, British Journal of Surgery, 2015

CANCELOG AT A POSTAL	Event rate					
Reference	ELC	DLC	Weight (%)	Relative risk	Relative risk	
Canadanalan						
Conversion	1 of 53	11 of 51	11-9	0.96 (0.46, 2.02)		
Lo et al. ^{sz}	5 of 45	9 of 41	6-5	0-51 (0-18, 1-39)		
Dávila et al.33	1 of 27	6 of 36	1-5	0-22 (0-03, 1-74)	A. 5 35 (A.5)	
Johansson er al. 35	23 of 74	20 of 71	25-9	1.10 (0.67, 1.82)	-b	
Kolla et al.37	5 of 20	5 of 20	5.7	1.00 (0.34, 2.93)	· ·	
Yadav er al.39	4 at 25	3 of 25	3-4	1-33 (0-33, 5-36)		
Macatee er al.38	1 of 36	1 of 36	0-9	1-00 (0-07, 15-38)		
Gutt er al.44	30 of 304	33 of 314	29-9	0-94 (0-59, 1-50)		
Gull et al.43	3 of 30	4 of 30	3.3	0-75 (0-18, 3-07)		
Verma er al.41	3 of 30	2 of 30	2-2	1-50 (0-27, 8-34)		
Falzi er al. ⁴²	4 of 25	12 of 25	6-7	0-33 (0-12, 0-89)		
Ozkartleş et al.46	4 of 30	0 of 30	0.8	9-00 (0-51, 160-17)		
Saber and Hokkam45	3 of 61	1 of 59	1.3	2-90 (0-31, 27-11)		
Subtotal	97 of 760	107 of 768	100-0	0-91 (0-70, 1-17)		
Hatermanathy -2 _ 0-00	2_11-98, 12	d.t., P = 0-46	P - 0%			
Overall	5, P = 0-4	5				
mplications	5 of 53	3 of 51	5-8	1-60 (0-40, 6-37)	e e e	
-	8 of 45	12 of 41	8.7	0-46 (0-19, 1-10)		
Dávila et al.33	5 of 27	13 of 31	8-6	0-44 (0-18, 1-06)		
Khan ³⁴	3 of 22	3 of 21	5-3	0-95 (0-22, 4-21)	2 -4	
Johansson er al.35	13 of 74	7 of 71	8-9	1.78 (0.75, 4-21)	+	
Kolla er al. ³⁷	4 of 20	3 of 20	5-9	1:33 (0:34, 5:21)		
Yadav er al. ³⁹	6 of 25	10 of 25	9-0	0-60 (0-26, 1-40)		
Macatee et al.38	8 of 36	4 of 36	7.3	2-00 (0-66, 6-06)		
Mare et al.40	6 of 27	13 of 27	9.2	0.46 (0.21, 1.03)		
Gull et al.43	6 of 30	4 of 30	7-0	1-50 (0-47, 4-78)	(- - -).	
Gutt er al.44	35 of 304	94 of 314	12-2	0-38 (0-27, 0-55)	-0	
Verma et al.41	0 of 30	0 of 30		Not estimable		
Saber and Hokkam45	16 01 61	10 of 59	10-0	1-55 (0-77, 3-13)	+	
Ozkardeş er al.48	8 of 30	0 of 30	2.1	17-00 (1-03, 281-91)		
Subtotal	121 of 7B4	176 of 786	100-0	0-91 (0-58, 1-41)		
Heterogeneity: $\tau^2 = 0.39$; Test for overall effect: $Z =$			1; P = 67%			
				0-4	02 0-1 1 10 Fewours ELC Fewours DLC	

SOMETIMES: it's not a piece of cake ...

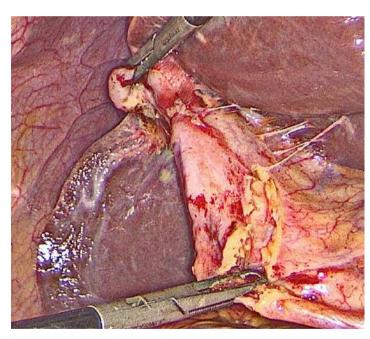
ORIGINAL ARTICLE

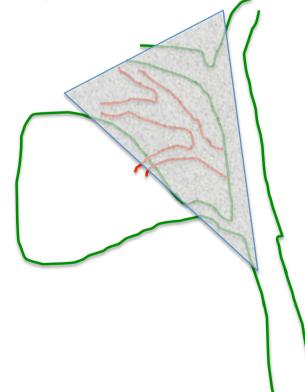
A preoperative predictive scoring system to predict the ability to achieve the critical view of safety during laparoscopic cholecystectomy for acute cholecystitis

Table 3 Predictive scoring system for creation of the CVS

Predictive factor	Points contributed
CRP	
≤5.5 mg/dl	0 point
>5.5 mg/dl	2 points
Gallstone impaction	
Present	1 point
None	0 point
Time from symptom onset to op	peration
≤72 h	0 point
>72 h	2 points

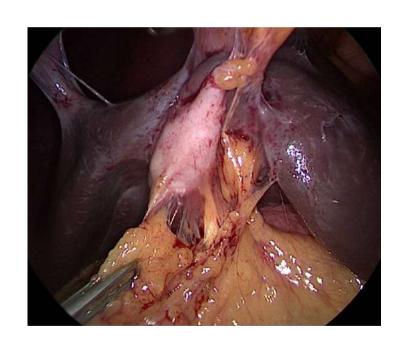
Table 5 Comparison of sensitivity, specificity, positive predictive value, and negative predictive value for creation of the CVS

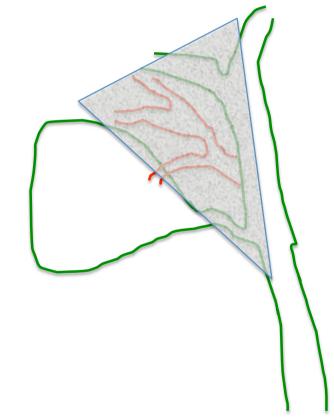

Variable	Sensitivity (%)	Specificity (%)	Positive predictive value (%)	Negative predictive value (%)
Total score > 2	91	71	45	97
Total score > 3	78	88	62	94
Total score > 4	57	96	76	96
Moderate/severe AC (Grade 2/3 ¹⁰)	78	78	47	93


AC, acute cholecystitis.

Onoe, HBP, 2017

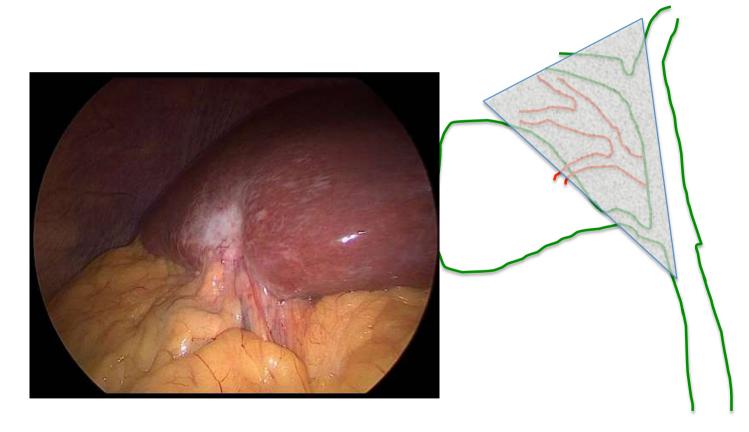
SEVERE CHRONIC CHOLECYSTITIS



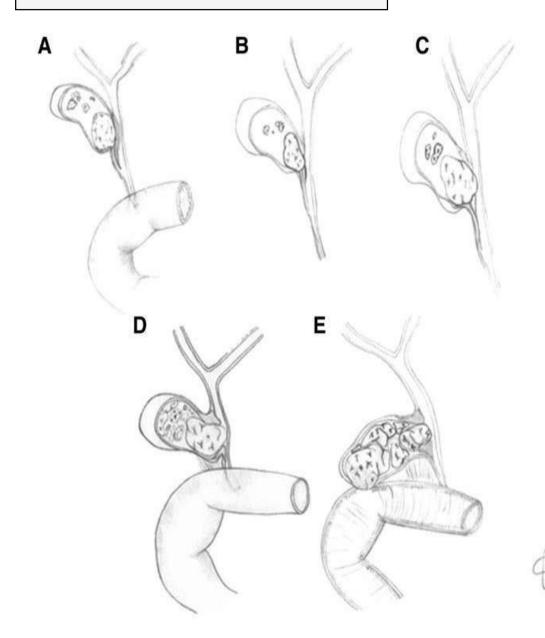


- Shrunken, contracted and intrahepatic gallbladder
- Hepatocystic triangle with biliary inflammatory fusion
- Inflammation can extend to porta hepatis.

SEVERE CHRONIC CHOLECYSTITIS



- Shrunken, contracted and intrahepatic gallbladder
- Hepatocystic triangle with biliary inflammatory fusion
- Inflammation can extend to porta hepatis.



SEVERE CHRONIC CHOLECYSTITIS

- Shrunken, contracted and intrahepatic gallbladder
- Hepatocystic triangle with biliary inflammatory fusion
- Inflammation can extend to porta hepatis.

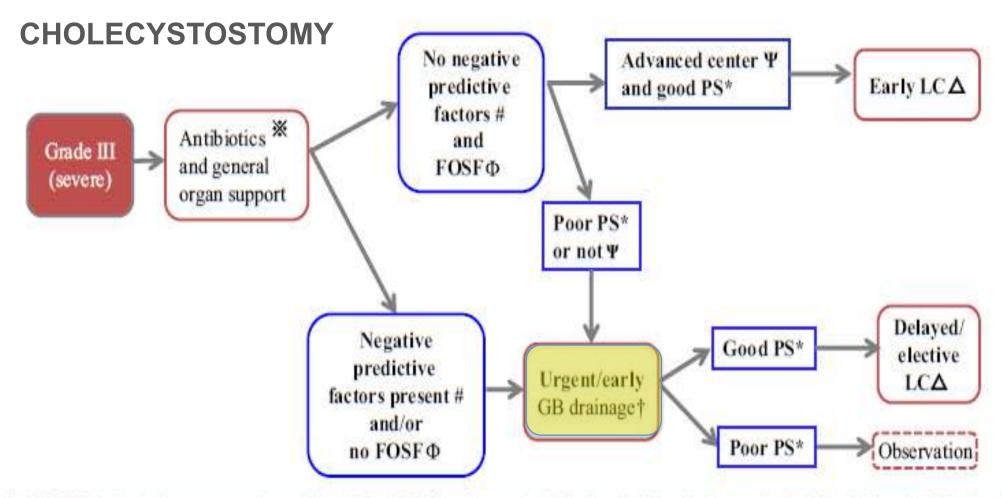
MIRIZZI SYNDROME

HOW to MANAGE the DIFFICULT ONE?

NON OPERATIVE MANAGEMENT / CHOLECYSTOSTOMY

PEROPERATIVELY

CALL FOR HELP


BAILOUT PROCEDURES

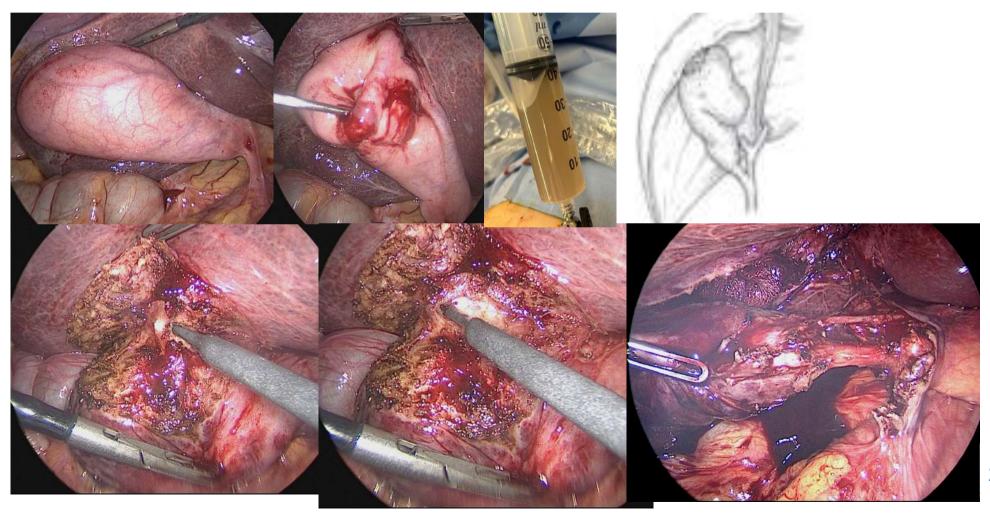
FUNDUS FIRST APPROACH

SUBTOTAL CHOLECYSTECTOMY

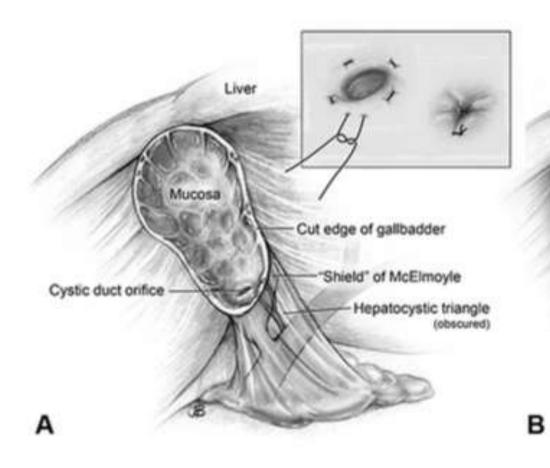
CONVERSION TO OPEN CHOLECYSTECTOMY

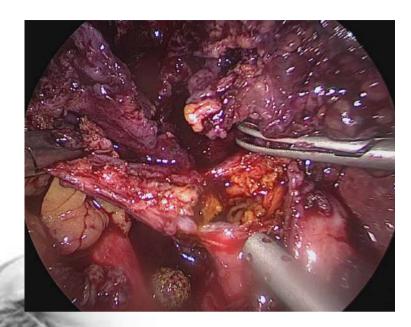
NON OPERATIVE MANAGEMENT

FUNDUS FIRST APPROACH

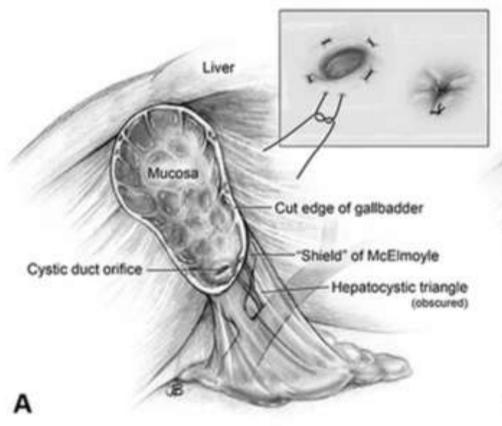

Fundus-first laparoscopic cholecystectomy

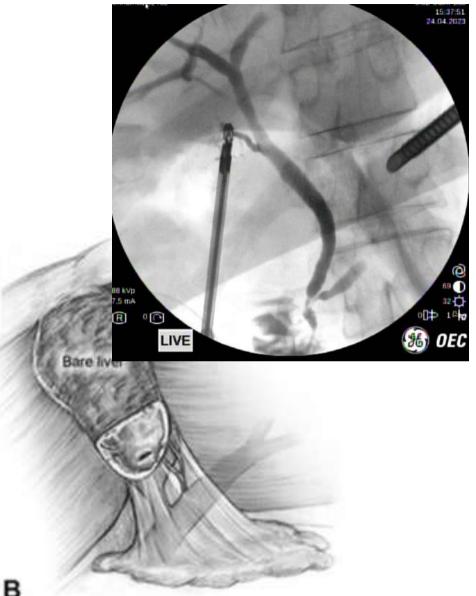
A safe means of reducing the conversion rate

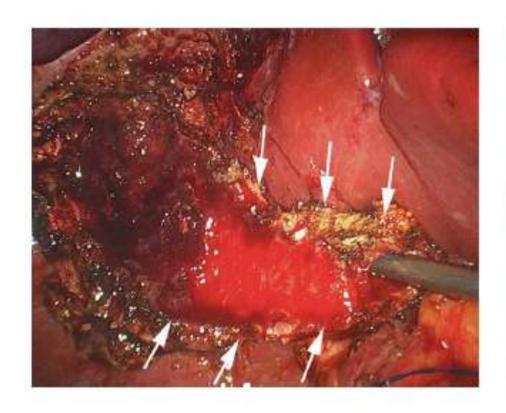

S. Mahmud, M. Masaud, K. Canna, A. H. M. Nassar

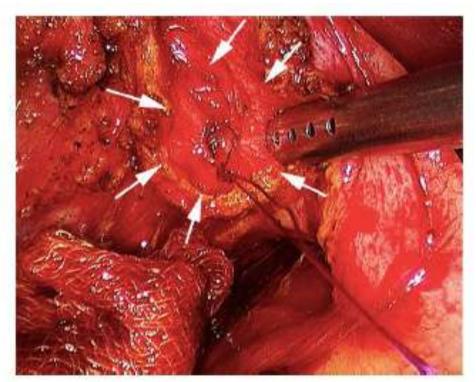

Upper Gastrointestinal and Laparoscopic Service, Department of Surgery, Vale of Leven District Hospital, Dunbartonshire, Scotland, G83 OUA, United Kingdom

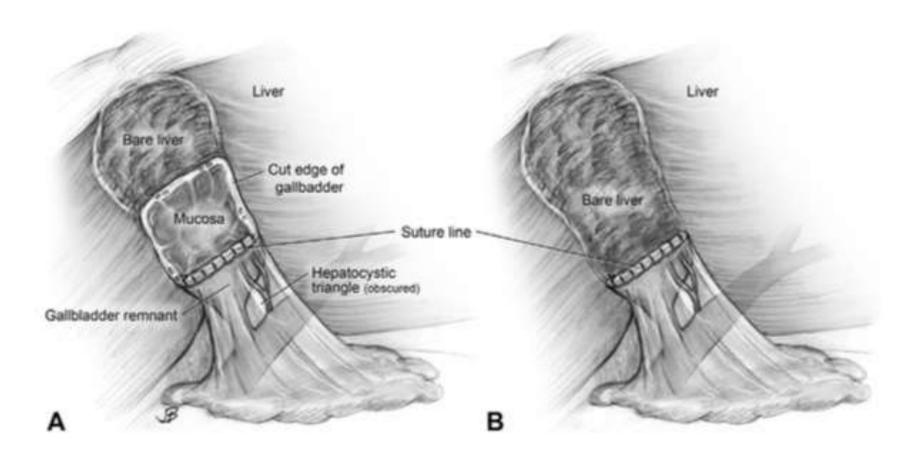
Received: 25 June 2001/Accepted in final form: 6 September 2001/Online publication: 17 December 2001


SUBTOTAL FENESTRATING **CHOLECYSTECTOMY**




SUBTOTAL FENESTRATING **CHOLECYSTECTOMY**




SUBTOTAL FENESTRATING CHOLECYSTECTOMY

SUBTOTAL RECONSTITUING CHOLECYSTECTOMY

CONVERSION TO OPEN CHOLECYSTECTOMY

Table III. Reasons for conversion to open cholecystectomy

Reason	n (%)	
Adhesions	39 (34.8)	
Inflammation	36 (32.1)	
Anatomy	33 (29.5)	
Injury	13 (11.6)	
Common bile duct stones	6 (5.4)	
Other	4 (3.6)	
Multiple reasons	19 (17.0)	

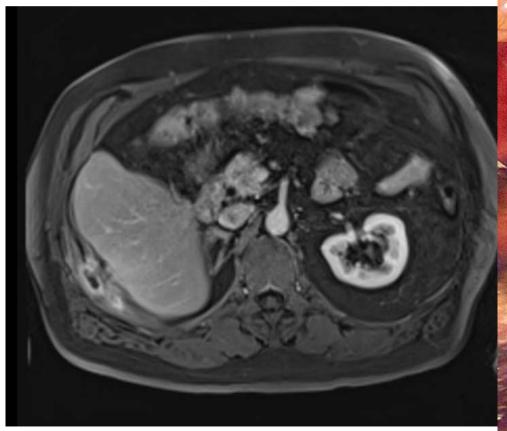
CONVERSION TO OPEN CHOLECYSTECTOMY

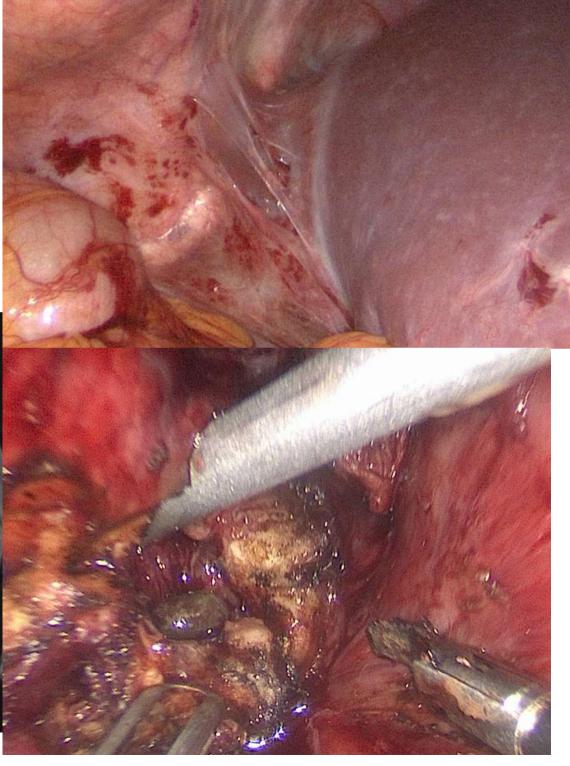
Table 1 Risk factors associated with prolonged operative time and open conversion

Conversion [15, 16]
Gallbladder wall > 4-5 mm on preoperative ultrasound
Age >60 or 65 years
Male gender
Acute cholecystitis (TG13 grade II/III)
Contracted gallbladder on ultrasound
Previous abdominal surgery
BMI
ASA score
•

Tokyo Guidelines 2018: diagnostic criteria and severity grading of acute cholecystitis (with videos)

Masamichi Yokoe · Jiro Hata · Tadahiro Takada · Steven M. Strasberg · Horacio J. Asbun · Go Wakabayashi · Kazuto Kozaka · Itaru Endo · Daniel J. Deziel · Fumihiko Miura · Kohji Okamoto · Tsann-Long Hwang · Wayne Shih-Wei Huang · Chen-Guo Ker · Miin-Fu Chen · Ho-Seong Han · Yoo-Seok Yoon · In-Seok Choi · Dong-Sup Yoon ' Yoshinori Noguchi ' Satoru Shikata ' Tomohiko Ukai ' Ryota Higuchi ' Toshifumi Gabata ' Yasuhisa




GALLSTONES RETRIEVAL

2019: Cholecystectomy

2023: Chronic costal pain and

fever

BILE DUCT ASSESSMENT

INTRA OPERATIVE CHOLANGIOGRAPHY (IOC)

Original article

Selective intraoperative cholangiography and risk of bile duct injury during cholecystectomy

B. Törnqvist¹, C. Strömberg¹, O. Akre², L. Enochsson¹ and M. Nilsson¹

¹Department of Clinical Science, Intervention and Technology, Division of Surgery, and ²Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden

Correspondence to: Dr B. Törnqvist, Department of Clinical Science, Intervention and Technology, Division of Surgery, Karolinska Institutet, SE-14186 Stockholm, Sweden (e-mail: bjorn.tornqvist@ki.se)

BILE DUCT ASSESSMENT

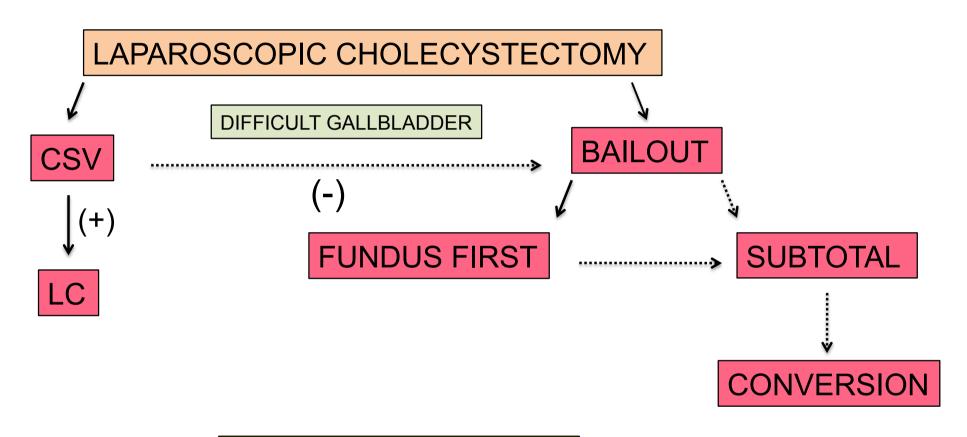
INTRA OPERATIVE CHOLANGIOGRAPHY (IOC)

BILE DUCT ASSESSMENT

ICG

Original article

Fluorescent cholangiography illuminating the biliary tree during laparoscopic cholecystectomy


T. Ishizawa^{1,2}, Y. Bandai¹, M. Ijichi¹, J. Kaneko², K. Hasegawa² and N. Kokudo²

Department of Surgery, Central Hospital of Social Health Insurance, and Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan

Correspondence to: Dr N. Kokudo, Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan (e-mail: kokudo-2su@h.u-tokyo.ac.jp)

CONCLUSION

STOP - CALL FOR HELP

TAKE HOME MESSAGES

LC = frequent for benign disease

50% biliary variations

Primary goal of LC = « safety first »

Achieving CVS - intention to perform IOC

Liberal use of **bail out techniques** – subtotal cholecystectomy

Open conversion

Do not stay alone